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The total entropy production fluctuations are studied in some exactly solvable models. For these systems, the
detailed fluctuation theorem holds even in the transient state, provided initially that the system is prepared in
thermal equilibrium. The nature of entropy production during the relaxation of a system to equilibrium is
analyzed. The averaged entropy production over a finite time interval gives a better bound for the average work
performed on the system than that obtained from the well-known Jarzynski equality. Moreover, the average
entropy production as a quantifier for information theoretic nature of irreversibility for finite time nonequilib-
rium processes is discussed.
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I. INTRODUCTION

Nonequilibrium thermodynamics of small systems has at-
tracted much interest in recent years �1�. In these systems,
thermal fluctuations are relevant and the probability distribu-
tions of physical quantities such as work, heat, and entropy
replace the sharp values of their macroscopic counterparts. In
this context, fluctuation theorems �FTs� �2–16� provide exact
equalities valid in a system driven out of equilibrium, inde-
pendent of the nature of driving. One of the fundamental
laws of physics, the second law of thermodynamics, states
that the entropy of an isolated system always increases. The
second law being statistical in nature does not rule out occa-
sional excursions from the typical behavior. FTs make quan-
titative predictions for observing events that violate the sec-
ond law within a short time for small systems by comparing
the probabilities of entropy generating trajectories to those of
entropy annihilating trajectories. FTs play an important role
in allowing us to obtain results generalizing Onsager reci-
procity relations to the nonlinear response coefficients in
nonequilibrium state.

Entropy or entropy production is generally considered as
an ensemble property. However, Seifert �15,16� generalized
the concept of entropy to a single stochastic trajectory. The
total entropy production along a single trajectory involves
both the particle entropy and the entropy change in the en-
vironment. It is shown to obey the integral fluctuation theo-
rem �IFT� for any initial condition and drive over an arbi-
trary finite time interval, i.e., transient case. In �15,16�, it is
also shown that in the nonequilibrium steady state over a
finite time interval, a stronger fluctuation theorem, namely,
the detailed fluctuation theorem �DFT� holds. Note that origi-
nally DFT was found in simulations of two-dimensional
sheared fluids �7� for entropy production in the medium in
the steady state but in the long-time limit. This was proved in
various contexts, e.g., �i� using chaotic hypothesis by Gal-
lavotti and Cohen �9�, �ii� using stochastic dynamics by Kur-
chan �17� as well as by Lebowitz and Spohn �18�, and �iii�
for Hamiltonian systems by Jarzynski �19�.

In our present work, we obtain the total entropy produc-
tion ��stot� distribution function, P��stot�, for different
classes of solvable models. In particular, we consider �i� a
Brownian particle in a harmonic trap subjected to an external
time-dependent force and �ii� a Brownian particle in a har-
monic trap, the center of which is dragged with an arbitrary
time-dependent protocol.

In these models, we show that the DFT is valid even in the
transient case, provided that the initial distribution of the
state variable is a canonical one. If the initial distribution is
other than canonical, DFT in transient case does not hold as
expected. To illustrate this, we have analyzed the total en-
tropy production for a system initially prepared in nonequi-
librium state that relaxes to equilibrium. Finally we briefly
discuss the important consequences of entropy production
fluctuation theorem, namely, �i� it gives a bound for the av-
erage work done during a nonequilibrium process over a fi-
nite time, generalizing the earlier known concept of free en-
ergy to a time-dependent nonequilibrium state. This bound is
shown to be better than that obtained from the Jarzynski
equality; �ii� average total entropy production over a finite
time quantifies irreversibility in an information theoretic
framework via the concept of relative entropy. This is dis-
tinct from the recently studied measure �20–24�.

II. MODEL

A. Case I: A particle in a harmonic trap subjected
to an external time-dependent force

We consider a Brownian particle in a harmonic potential
and in contact with a heat bath at temperature T. The system
is then subjected to a general driving force f�t�. The potential
is given by V0�x�= 1

2kx2. The particle dynamics is governed
by the Langevin equation in the overdamped limit:

�ẋ = − kx + f�t� + ��t� , �1�

where � is the friction coefficient, k is the spring constant
and ��t� is the Gaussian white noise with the properties
���t��=0 and ���t���t���=2T���t− t��. The magnitude of the
strength of white noise ensures that the system reaches equi-
librium in the absence of time-dependent fields.*jayan@iopb.res.in
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Using the method of stochastic energetics �or the energy
balance� �25,26�, the values of physical quantities such as
injected work or thermodynamic work �W�, change in inter-
nal energy ��U�, and heat �Q� dissipated to the bath can be
calculated for a given stochastic trajectory x�t� over a finite
time duration t:

W = �
0

t �U�x,t��
�t�

dt� = − �
0

t

x�t�� ḟ�t��dt�, �2a�

�U = U�x�t�,t� − U�x0,0� =
1

2
kx2 − xf�t� −

1

2
kx0

2, �2b�

and

Q = W − �U . �2c�

Equation �2c� is a statement of the first law of thermody-
namics. The particle trajectory extends from initial time t
=0 to final time t, x0 in Eq. �2b� is the initial position of the
particle. For simplicity, we have assumed that f�0�=0.

Initially the system is prepared in thermal equilibrium.
The distribution function is given by

P�x0� =� k

2�T
exp	−

kx0
2

2T

 . �3�

The Boltzmann constant kB has been absorbed in T. The
evolved distribution function P�x , t�, subjected to the initial
condition P�x0�, is obtained by solving the corresponding
Fokker Planck equation and is given by

P�x,t� =� k

2�T
exp	−

k�x − �x��2

2T

 , �4�

where

�x� =
1

�
�

0

t

e−k�t−t��/�f�t��dt�. �5�

A change in the medium entropy ��sm� over a time interval
is given by

�sm =
Q

T
. �6�

The nonequilibrium entropy S of the system is defined as

S�t� = −� dxP�x,t�ln P�x,t� = �s�t�� . �7�

This leads to the definition of a trajectory-dependent entropy
of the particle as

s�t� = − ln P�x�t�,t� . �8�

The change in the system entropy for any trajectory of dura-
tion t is given by

�s = − ln�P�x,t�
P�x0� � , �9�

where P�x0� and P�x , t� are the probability densities of the
particle positions at initial time t=0 and final time t, respec-

tively. Thus for a given trajectory x�t�, the system entropy
s�t� depends on the initial probability density and hence con-
tains the information about the whole ensemble. The total
entropy change over time duration t is given by

�stot = �sm + �s . �10�

Using the above definition of total entropy production,
Seifert �15,16� derived the IFT, i.e.,

�e−�stot� = 1, �11�

where angular brackets denote average over the statistical
ensemble of realizations, or over the ensemble of finite time
trajectories.

In nonequilibrium steady state, where the system is char-
acterized by time-independent stationary distribution, a
stronger fluctuation theorem �DFT� valid over arbitrary finite
time interval holds �15,16�. This theorem for the total en-
tropy production can be stated as

P��stot�
P�− �stot�

= e�stot. �12�

The above theorem holds even under more general situation,
i.e., when system is subjected to periodic driving: f�x ,��
= f�x ,�+�p�, where �p is the period. The additional require-
ment is that the system has to settle into a time-periodic
state: P�x ,��= P�x ,�+�p�, and trajectory length t is an inte-
gral multiple of �p.

As a side remark, we would like to state that if the distri-
bution P��stot� is a Gaussian and satisfies IFT, then it natu-
rally satisfies DFT even if system is in a transient state. This
happens to be the case in our present problem only under the
condition that the system is being prepared initially in equi-
librium as shown below.

Using Eqs. �2c�, �6�, �8�, and �10�, the total entropy be-
comes

�stot =
W − �U

T
− ln

P�x,t�
P�x0�

. �13�

Substituting for �U from Eq. �2b� and using Eqs. �3� and �4�,
we get

�stot =
1

T
	W +

1

2
k�x�2 + xf − kx�x�
 . �14�

The work W is a linear functional of x�t�, and from the above
equation, we observe that �stot is linear in x, while x is itself
a linear functional of Gaussian random variable ��t�:

x�t� = x0e−kt/� +
1

�
�

0

t

e−k�t−t��/��f�t�� + ��t���dt�. �15�

From the above fact it follows that P��stot� is a Gaussian
function. It is therefore sufficient to calculate the mean
���stot�� and variance ��2
��stot

2 �− ��stot�2� to get the dis-
tribution, which is of the form

P��stot� =
1

�2��2
exp	−

��stot − ��stot��2

2�2 
 , �16�

where
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��stot� =
1

T
	�W� −

1

2
k�x�2 + �x�f
 . �17�

The formal expression of �W� is given by

�W� = − �
0

t

�x�t��� ḟ�t��dt , �18�

where �x� is given by Eq. �5�. The variance �2 is given by

�2 =
1

T
	 �W2� − �W�2

T
+

f2

k
+ k�x�2 − 2�x�f


+
1

T2 ��Wx� − �W��x���2f − 2k�x�� �19a�

=
1

T
	2�W� +

2f2

k
+ k�x�2 − 2�x�f


+
1

T2 ��Wx� − �W��x���2f − 2k�x�� . �19b�

To arrive at Eq. �19b�, we have used the fact that �W2�
− �W�2=2T��W�+ f2�t�

2k �, which has been proved in Appendix
A. Also in the same appendix, we have shown that the cross
correlation

�Wx� − �W��x� =
T

k
�k�x�t�� − f�t�� . �20�

Using Eq. �20� in Eq. �19b�, it follows that

�2 = 2��stot� . �21�

The Gaussian distribution of P��stot� along with the
above obtained condition for variance implies validity of the
detailed fluctuation theorem for general protocol f�t�. Need-
less to say, this theorem in the considered linear system is
valid even in the transient case provided the initial distribu-
tion for the state variable is a canonical distribution. Further,
DFT also implies IFT �but the converse is not true�.

Special case: Sinusoidal perturbation

For this case, we consider f�t� to be a sinusoidal oscillat-
ing drive, i.e., f�t�=A sin 	t. Using Eq. �17�, we obtain

��stot� =
1

T
��W� −

1

2
k�x�2 + A�x�sin 	t�

=
A2�	

4T�k2 + �2	2�
�2	�k2t + �− 2 − e−2kt/��k� + t�2	2�

+ 8e−kt/�k�	 cos 	t − 2k�	 cos 2	t

+ �k2 − �2	2�sin 2	t� . �22�

The variance is �2=2��stot�, and the distribution P��stot�
is Gaussian as mentioned earlier. For this case, if the initial
distribution is not canonical, then P��stot� is not a Gaussian.
This is shown in Fig. 1 where we have plotted P��stot� for
the above protocol obtained numerically for various times as
mentioned in the figure caption. The initial distribution is a

Gaussian with P�x0�=� k
2��x

2 exp�−
kx0

2

2�x
2 �, where the condition

�x
2�T represents an athermal distribution. In the inset, we

have plotted P��stot� for same parameters used for the main
figure for thermal initial distribution: �x

2=T=0.1 �for this
case, distributions for �stot are Gaussian�. All quantities are
in dimensionless units and values of physical parameters are
mentioned in figure caption. We clearly notice that the dis-
tributions P��stot� in the main figure are non-Gaussian. The
observed values of �e−�stot� from our simulation equal 1.005,
1.006, 0.995, and 1.011 for t=10, 20, 50, and 100, respec-
tively, in the athermal case. All these values are close to
unity within our numerical accuracy, clearly validating IFT.
For numerical simulations, we have used Heun’s scheme.
This gives a global error in the dynamics of the order of h2,
where h is the time step taken in the simulation �for details,
refer to �27��. To minimize the error in calculating �e−�stot�,
we have taken large number of realizations �more than 105�,
depending on parameters. Our estimated error bars are found
to be around 10−4. Moreover, these values act as a check on
our numerical simulations �28–31�. As the observation time
of trajectory increases, weight on the negative side of
P��stot� decreases, i.e., the number of trajectories for which
�stot
0 decreases. This is expected as we go to macroscopic
scale in time. The asymmetric distributions at short time
scales tends closer to being a Gaussian distribution with non-
zero positive ��stot�. The central Gaussian region increases
with the time of observation. The presence of non-Gaussian
tails �large deviation functions associated with the probabil-
ity of extreme events� at large values of �stot becomes very
difficult to detect numerically. However, they are not ruled
out. For large times, �2�2��stot�, suggesting validity of
DFT only in the time asymptotic regime. Similar observa-
tions have been made in regard to work and heat distribu-
tions for a driven Brownian particle �28–32�.

The Fourier transform of the distribution P��stot� can be
obtained analytically for a given initial athermal Gaussian
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FIG. 1. �Color online� In the figure, we have plotted P��stot� vs
�stot for various observation times when the initial distribution is
athermal ��x

2=0.2�. For thermal distribution, �x
2=0.1. The observa-

tion times are t=10 �solid line�, t=20 �dashed line�, t=50 �bigger
dashed line�, and t=100 �dotted line�. The inset shows total entropy
distributions for same observation time values when the initial dis-
tribution is thermal. For this case, all distributions are Gaussian. For
both cases, A=0.1, k=0.1, and 	=0.1.
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distribution of the particle position in presence of a drive.
This can be obtained following exactly the same procedure
of Zon et al. �12� for heat fluctuations. However, later we
consider a simpler case of a system relaxing to equilibrium
in absence of protocol �case III�.

B. Case II: P(�stot) for particle in a dragged harmonic
oscillator

For this case, the effective potential U�x , t� for the Brown-
ian particle is given by

U�x,t� =
1

2
k	x −

f�t�
k

2

. �23�

The center of the harmonic oscillator is moved with a time-
dependent protocol f�t� /k. The special case of this model is
when f�t� /k=ut �center of the oscillator is moved uniformly
with velocity u�. This model has been extensively studied
both experimentally �33� and theoretically �11,12,34–36� in
regard to analysis of Jarzynski nonequilibrium work relation
�10� and related issues.

The expression for work is given by

W�t� 
 �
0

t �U

�t�
dt� = − �

0

t

x�t�� ḟ�t��dt� +
f2�t�
2k

. �24�

By taking canonical initial condition for P�x0�, given in Eq.
�3�, the probability density at time t is given by

P�x,t� =� k

2�T
exp	−

k�x − �x��2

2T

 , �25�

where

�x� =
1

�
�

0

t

e−k�t−t��/�f�t��dt�. �26�

The change in internal energy during a time t is

�U =
1

2
k	x −

f�t�
k

2

−
1

2
kx0

2. �27�

For simplicity, we have set f�0�=0. The expression for �stot
reduces to

�stot =
W

T
−

f2

2kT
+

xf

T
+

k�x�2

2T
−

kx�x�
T

. �28�

From Eq. �28�, it follows that P��stot� is a Gaussian. Carry-
ing out exactly the similar analysis as before �i.e., for case I�,
after tedious but straightforward algebra, we finally obtain
the expressions for mean and variance:

��stot� =
�W�
T

−
f2

2kT
−

k�x�2

2T
+

f�x�
T

�29�

and

�2 =
2�W�

T
−

f2

kT
−

k�x�2

T
+

2f�x�
T

= 2��stot� , �30�

where �W�=�0
t �x�t��� ḟ�t��dt� and �x� is given in Eq. �26�.

Condition �30� along with P��stot� being Gaussian implies
validity of both DFT and IFT for �stot.

Special case: The dragging force is linear

We consider f�t�
k =ut, i.e., center of the harmonic trap is

being dragged uniformly with velocity u. To obtain P��stot�,
we need the expression for ��stot� only:

��stot� =
u2�t

T
−

u2�2

2kT
�1 − e−kt/���3 − e−kt/�� . �31�

The above expression can be shown to be positive for all
times as it must be.

C. Case III: Entropy production with athermal initial
condition: A case study for a relaxation dynamics

In this subsection, we study a system relaxing toward
equilibrium. If initially the system is prepared in a nonequi-
librium state, then in absence of any time-dependent pertur-
bation or protocol, it will relax to a unique equilibrium state.
The statistics of total entropy production is analyzed. Our
system consists of a Brownian particle in a harmonic oscil-
lator �V0�x�= 1

2kx2� and the temperature of the surrounding
medium is T. The initial distribution of the particle is taken
to be

P�x0� =� k

2��x
2 exp	−

kx0
2

2�x
2
 . �32�

Note that when �x
2�T, it represents athermal initial distribu-

tion. Since no protocol is being applied, the thermodynamic
work done on the system is identically zero. As time
progresses, the distribution evolves with probability density
given by

P�x,t� =� 1

2��x2�
exp	−

x2

2�x2�
 , �33�

where �x2�t�� is the variance in x at time t, which is equal to

�x2�t��= T
k +

�x
2−T

k e−2kt/�. The distribution P�x , t� relaxes to
equilibrium distribution as time t→�. Using Eq. �13�, �32�,
and �33�, we get

�stot = −
�U

T
−

1

2
ln	 �x

2

k�x2�
 − 	−
x2

2�x2�
+

kx0
2

2�x
2
 .

Now, considering the fact that �U= 1
2k�x2−x0

2�, we arrive at

�stot =
k

2
	�x

2 − T

T�x
2 
x0

2 +
1

2
	T − k�x2�

T�x2� 
x2 −
1

2
ln	 �x

2

k�x2�
 .

This can be written in a simplified form

�stot =
1

2
�x0

2 +
1

2

x2 + � , �34�

where �=k�
�x

2−T

T�x
2 �, 
= � T−k�x2�

T�x2� �, and �=− 1
2 ln�

�x
2

k�x2� �.
The total entropy production is a quadratic function of x

and x0 and hence P��stot� is not Gaussian. To obtain
P��stot�, we have to know the joint distribution of x0 and x,
namely, P�x0 ,x , t� which in our problem can be obtained
readily and is given by
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P�x0,x,t� =
1

2��det A
exp��a − �a��† · A−1 · �a − �a��� ,

�35�

where

a = 	x0

x

 , �36�

x0 and x being, respectively, the initial and final positions of
the particle. The matrix A is defined through

A 
 ��a − �a�� · �a − �a��†� = �a · a†� = �	x0

x

�x0 x ��

= 	 �x0
2� �xx0�

�xx0� �x2�

 = 	 �x

2

k

�x
2

k e−kt/�

�x
2

k e−kt/� T
k + ��x

2−T

k �e−2kt/�
 . �37�

With the help of the distribution given in Eq. �35�, one can
write, using Eq. �34�,

P��Stot,t� = �
−�

�

dxdx0P�x0,x,t�

� ���stot − 	�

2
x0

2 +



2
x2 + �
� . �38�

The evaluation of P��stot� is a difficult task. However, the

Fourier transform P̂�R , t��
�eiR�stotP��stot�d�stot� of
P��stot� can be obtained easily. To this end we can carry out
the analysis similar to that for heat distribution in a driven
harmonic oscillator by Zon et al. �12�. Finally we get

P̂�R,t� =
eiR�

�det�I − iRA · B�
. �39�

The details of this derivation are given in Appendix B. Sub-

stituting R= i in the above equation, and we get P̂�R= i , t�
= �e−�stot�=1, consistent with the IFT �see Appendix B for

details�. From Eq. �39�, we also note that P̂�R , t�� P̂�i
−R , t�, indicating that DFT is not valid for this linear prob-
lem in the presence of athermal initial distribution. From
above equation, we can also obtain average entropy produc-
tion given by

��stot� = � 1

i

�

�R
P̂�R,t��

R=0

=
�x

2 − T

2T
�1 − e−2kt/�� −

1

2
ln� �x

2

T + e−2kt/���x
2 − T�� .

�40�

Similarly, higher moments can also be obtained with the use
of this characteristic function. One can invert the character-
istic function to obtain P��stot� using integral tables. How-
ever, the expression is complicated and unilluminating. From
the Fourier transform, it is obvious that P��stot� is non-
Gaussian.

In Fig. 2, we have plotted P��stot� versus �stot over a
fixed time interval �see figure caption� for two different cases

for which initial width of the distribution �x
2 equals 0.05 and

0.2. The temperature of the bath is 0.1. The distribution
P��stot� in both cases are asymmetric. For the case �x

2=0.2,
the distribution is peaked around the negative value of �stot.
However, it exhibits a long tail making sure that ��stot� is
always positive. Since initial width of the distribution is
larger than the thermal distribution, change in the entropy of
the system during the relaxation process is negative and it
dominates the total entropy production. Hence we obtain
peak in P��stot� in the negative side of �stot. For the case
�x

2=0.05, change in the entropy of the system is positive.
Hence peak in P��stot� is in the positive region. In both
cases, we obtain �e−�stot� equal to unity within our numerical
accuracy: 0.978 ��x

2=0.2� and 1.001 ��x
2=0.05�, consistent

with IFT. In the inset, we have plotted ��stot� as a function of
time for the above cases. ��stot� is a monotonically increas-
ing function of time and saturates asymptotically when equi-
librium is reached. It may be noted that equilibrium is char-
acterized by zero total entropy production, change in the
entropy of bath at any instant being compensated by equal
and opposite change in entropy of the system.

III. SOME RELATIONS RESULTING FROM
THE AVERAGE ENTROPY PRODUCTION

FLUCTUATIONS OVER FINITE TIME

We now discuss some related offshoots of the total en-
tropy production. These give a better bound for the average
work done over a finite time and provide a different quanti-
fier for the footprints of irreversibility. The Jarzynski non-
equilibrium work relation �10� relates work done over a finite
time in a nonequilibrium state to the equilibrium free-energy
differences, namely,

�e−
W� = e−
�F. �41�

Here the angular brackets denote an average over a statistical
ensemble of realizations of a given thermodynamic process.
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FIG. 2. �Color online� The figure shows plots of P��stot� vs
�stot during relaxation to equilibrium �external protocol is absent�.
The initial distributions are athermal with �x

2=0.05 �solid line� and
�x

2=0.2 �dashed line�. The spring constant is k=0.1 and observation
time was t=40, by which the system has reached equilibrium �see
inset�. The inset shows plots average entropy versus observation
time for the same initial distributions.
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The finite time thermodynamic process involves changing
the time-dependent parameter ��t� of the system from initial
value ��0�=A to a final value ����=B. ��t� can be an arbi-
trary function of time. Initially the system is prepared in
equilibrium state corresponding to parameter A, and work W
is evaluated over a time �. At the end of the period �, the
system in general will not be at equilibrium corresponding to
parameter B, yet from this nonequilibrium work, one can
determine the difference in equilibrium free energies, �F,
between the states described by A and B using Eq. �41�.
From the same equation, using Jensen’s inequality, it follows
that

�W� � �F = FB − FA. �42�

This result is consistent with the Clausius inequality, which
is written in the form of work and energy, instead of the
usual heat and entropy. Using Jensen’s inequality and the
integral fluctuation theorem of entropy production, namely,
Eq. �11�, it follows that the average total entropy production
over a time �, ��stot��0. Using Eq. �2c�, this can be rewrit-
ten as

��stot� =
1

T
�W − �U + T�s� � 0 ⇒ �W� � ��U − T�s� ,

�43�

where �U and �s are the changes in internal energy and in
system entropy, respectively. The time-dependent free energy
in a nonequilibrium state can be defined as �37�

F�x,t� = U�x,t� − Ts�x,t� = U�x,t� + T ln P�x,t� , �44�

which is in general a fluctuating quantity. Since free energy
depends on entropy, it contains the information of the whole
ensemble. In equilibrium, the expectation value of this free
energy reduces to the Helmholtz free energy. Using Eq. �43�
and the given definition of nonequilibrium free energy de-
scribed above, it follows that

�W� � ��F���� , �45�

where �F���=F2���−F1�0�.
If initially the system is prepared in equilibrium with pa-

rameter A, F1 equals equilibrium free energy FA. F2��� is
determined by the probability distribution at the end point of
the protocol at which the system is out of equilibrium with
system parameter at �=B, i.e., F2���
U�x ,��+T ln P�x ,��.
Now in the following, we show that

��F���� � �F = FB − FA, �46�

thus giving a better bound for the average work done over a
finite time. To this end, consider a situation at which initially
the system is prepared in equilibrium with parameter �=A
�corresponding to free energy FA� and is allowed to evolve
with the time-dependent protocol ��t� up to time � at which
�=B. Beyond �, the system is allowed to relax to equilibrium
by keeping � fixed at B. At the end of the entire process, the
total change in equilibrium free energy equals FB−FA. The
free energy being a state function, one can rewrite it as

FB − FA = �FB − F2��� + F2��� − FA�

= FB − �F2���� + ��F���� . �47�

Here, ��F���� is the average change in the nonequilibrium
free energy, �F2����−FA, during the process up to time �,
whereas FB− �F2���� is the change in the free energy during
the relaxation period when the protocol is held fixed. One
can readily show that �37� during the relaxation process to-
ward equilibrium, the average �or expectation value� of free
energy always decreases, i.e., �FB−F2���� is negative. From
this and Eq. �47�, it follows that ��F�����FB−FA. Thus we
get a better bound for the average work done than that ob-
tained from the Jarzynski identity �10�.

To illustrate this, in Fig. 3 we have plotted �W�, ��F����,
and �F for a driven harmonic oscillator U�x�= 1

2kx2 with
force f�t�=A sin 	t as a function of the amplitude of driving
A. For this graph, system parameter f�t� changes from f�0�
=0 to f���=A ��F=FB−FA= −A2

2k �, i.e., for a time variation
from t=0 to t=�= �

2	 . We observe from the figure that
��F���� is indeed a better bound. The analytical results for
this model are presented in Appendix C.

Some remarks, however, are in order. The realizations for
which W
�F need not correspond to �stot�0 and vice
versa. This implies that the trajectories which violate the
second law, namely, �stot
0, do not necessarily violate the
inequality W
�F, which is also closely related to the sec-
ond law �38�. Equation �45� can be treated as a generaliza-
tion of Clausius’ inequality to nonequilibrium processes.

Dissipation is related to our ability to distinguish the ar-
row of time. Hence the dissipated work �Wd�= �W�−�F is
recently identified as the measure of irreversibility. More-
over, it turns out that the relative entropy of microscopic

trajectories D1�P � P̃� in full path space between forward �P�
and reverse �P̃� processes is indeed equal to dissipative
work,

�Wd� = D1�P � P̃� . �48�
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∆F
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,<

W
>

∆F
<∆F(τ)>
<W>

ω=0.2, k=0.1, t=π/2ω

FIG. 3. �Color online� Plots for �F , ��F���� and �W� as func-
tions of the driving amplitude A with the parameter values set at
	=0.2, k=0.1, and �=� /2	.
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Hence D1�P � P̃� works as a measure of irreversibility or in-
distinguishability between forward and backward evolutions.
Here, forward evolution corresponds to the system being pre-
pared initially at equilibrium in the state with control param-
eter ��0�=A evolved up to time � at which the control pa-
rameter is ����=B. During the backward evolution, the
system is prepared in equilibrium with control parameter B
and the time-reversed protocol is applied from B to A. For
details, see �20–23�. Separately, it can also be shown by us-
ing Crooks identity �21,39�,

�Wd� = D�P�W� � P̃�− W�� . �49�

Here D�P�W� � P̃�−W�� is the relative entropy between the

two probability distributions P�W� and P̃�−W�, which are the
work distributions for the same thermodynamic process for
forward and backward evolutions, respectively. This brings
us to an important conclusion that dissipation can be re-
vealed by any finite set of variables that contain information
about the work or from the dynamics of those variables that
couple to the control parameter �. Thus one can identify few
dynamical variables in which traces of the dissipation reside.

This is unlike D�P � P̃�, which requires information about en-
tire set of microscopic system variables during their evolu-
tion.

We note that ��stot� can be taken as the measure of irre-
versibility as it also represents the relative probability

D2�P � P̃� between forward and time-reversed backward pro-
tocols �14–16�:

��stot� = D2�P � P̃�

=� P�x0�P�x��x0�ln	P�x0�P�x��x0�

P̃�x̃0�P̃�x̃��x̃0�

D�xt�dx0dx�,

�50�

where P�x� �x0� and P̃�x̃� � x̃0� are the shorthand notations for
the probabilities of traversing the entire forward path from
t=0 to t=� described by x�t� and that of traversing the re-
verse path described by variables x̃��− t�. For details, see
references �14–16�. Here, the forward evolution corresponds
to the system being prepared initially in any arbitrary state
and evolved up to time � along a prescribed protocol. At the
end of the protocol, the system is in a state P�x ,�� deter-
mined by the initial condition and the dynamics. During the
backward process, the system is assumed to be in the same
state corresponding to the end point of forward evolution

P�x ,��
 P̃�x̃0� and protocol is time reversed, thereby evolv-
ing the system along the backward trajectory. Unlike for
work �Eq. �49��, there is no Crooks-like identity for the total
entropy production between forward and reverse process �ex-
cept in the stationary state�. Hence it is not possible to de-
scribe the measure of irreversibility or dissipation in terms of
the relative entropy between probability distribution of �stot
for forward and backward processes. Thus, the information
of irreversibility is contained in all the microscopic variables
associated with the system. This can also be noticed from the
fact that the definition of total entropy production involves

the probability density of all the system variables. Moreover,
this probability density contains the information about the
initial and final ensembles of the system variables. Identifi-
cation of ��stot� as a measure of irreversibility, is tantamount
to identifying average dissipative work over a finite time
process �W−�F����
�Wd���� as a measure of irreversibility,
where ��F���� is the nonequilibrium change in average free
energy over a finite time as mentioned before. Needless to
say, for this measure �Wd����, the system need not be in
equilibrium at the beginning of the forward process which is
a necessary condition for earlier defined measure for irre-
versibility �20–23�. Further work along this direction is in
progress.

IV. CONCLUSIONS

In conclusion, we have shown that in a class of solvable
linear models, �stot satisfies DFT even in the transient re-
gime provided the system is initially prepared in an equilib-
rium state. For athermal initial condition, the nature of total
entropy production is analyzed during a relaxation process.
The bound on average entropy production over a finite time
process leads to a better bound for the average work done
over the same finite time interval. Some points have been
raised if one assigns meaning to the average entropy produc-
tion as a measure of irreversibility. This measure implies the
generalization of Clausius’ statement to nonequilibrium finite
time processes, namely, �Wd����= �W−�F�����0. Analysis
of the total entropy production in presence of magnetic field
is carried out separately. The results will be published else-
where �40�.
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APPENDIX A: CALCULATION OF VARIANCE OF �stot

1. Calculation of variance of W

Using Eq. �2a�,

W − �W� = − �
0

t

�x�t�� − �x�t���� ḟ�t��dt�

= − �
0

t

dt� ḟ�t���x�t��e−kt�/�

+ e−kt�/��
0

t�
ekt�/���t��dt�� ,

���W − �W��2� = �x0�2�
0

t

dt� ḟ�t��e−kt�/��
0

t

dt1 ḟ�t1�e−kt1/�

+
1

�2�
0

t

dt�f�t��e−kt�/��
0

t

dt1f�t1�e−kt1/�

��
0

t�
dt�ekt�/��

0

t1

dt2ekt2/����t����t2��

ENTROPY PRODUCTION THEOREMS AND SOME CONSEQUENCES PHYSICAL REVIEW E 80, 011117 �2009�

011117-7



=
T

k
�

0

t

dt� ḟ�t��e−kt�/��
0

t

dt1 ḟ�t1�e−kt1/�

+
2T

�
�

0

t

dt�f�t��e−kt�/��
0

t

dt1f�t1�e−kt1/�

��
0

t�
dt�e2kt�/�

=
T

k
�

0

t

dt1 ḟ�t1�e−kt1/��
0

t

dt� ḟ�t��ekt�/�

=
2T

k
�

0

t

dt1 ḟ�t1�e−kt1/��
0

t1

dt� ḟ�t��ekt�/�.

The above integration when integrated partially gives

�W2� − �W�2 =
2T

k
�

0

t

dt1 ḟ�t1�f�t1�

−
2T

�
�

0

t

dt1 ḟ�t1�e−kt1/��
0

t1

ekt�/�f�t��dt�.

Noting that �x�t1��= e−kt1/�

� �0
t1ekt�/�f�t��dt� and W

=−��x�t1�� ḟ�t1�dt1, we finally get

��W − �W��2� =
2T

2k
f2�t� +

2T

�
�W� = 2T��W� +

f2

2k
� .

2. Calculation of cross correlation ŠWx‹−ŠW‹Šx‹

We have, from Eqs. �2a� and �15�,

�W�t���x�t�� = �− �
0

t

�x�t��� ḟ�t��dt�� � �x�t��

= �− �
0

t 	 1

�
�

0

t�
e−k�t�−t��/�f�t��dt�
 ḟ�t��dt��

� � 1

�
�

0

t

e−k�t−t1�/�f�t1�dt1�
= −

1

�2�
0

t

dt� ḟ�t���
0

t�
dt�e−k�t�−t��/�f�t��

��
0

t

dt1e−k�t−t1�/�f�t1� . �A1�

On the other hand,

W . x = �− �
0

t

x�t�� ḟ�t��dt��x�t�

= �− �
0

t �x0e−kt�/� +
1

�
�

0

t�
e−k�t�−t��/��f�t��

+ ��t���dt�� ḟ�t��dt��
� �x0e−kt/� +

1

�
�

0

t

e−k�t−t1�/��f�t1� + ��t1��dt1� ,

��W . x� = − �
0

t

�x0
2�e−k�t+t��/� ḟ�t��dt�

−
1

�2�
0

t

dt� ḟ�t���
0

t�
dt�e−k�t�−t��/��

0

t

dt1�f�t��f�t1�

+ ���t����t1���e−k�t−t1�/�

= −
T

k
�

0

t

e−k�t+t��/� ḟ�t��dt�

−
1

�2�
0

t

dt� ḟ�t���
0

t�
dt�e−k�t�−t��/��

0

t

dt1�f�t��f�t1�

+ 2T���t − t���e−k�t−t1�/�, �A2�

where we have used the fact that 1
2k�x0�2= 1

2T and
���t���t���=2T��t− t��. Also, x0 and ��t� are uncorrelated.

From Eqs. �A1� and �A2�,

�W�t�x�t�� − �W�t���x�t��

= − �T/k��
0

t

e−k�t+t��/� ḟ�t��dt�

− �2T/���
0

t

dt� ḟ�t���
0

t�
e−k�t�−t��/�e−k�t−t��/�dt�

=− �T/k�e−kt/��
0

t

e−kt�/� ḟ�t��dt�

− �2T/��e−kt/��
0

t

dt� ḟ�t��e−kt�/��
0

t�
e2kt�/�dt�. �A3�

Finally, one obtains

�W�t�x�t�� − �W�t���x�t�� = −
T

k
e−kt/��

0

t

dt� ḟ�t��ekt�/�dt�.

�A4�

On integrating by parts, the integral on the right-hand side
becomes

�ekt�/�f�t���0
t − �

0

t
k
�e−kt�/�f�t�� = ekt/�f�t� −

k

�
�

0

t

ekt�/�f�t��dt�.

Using this, Eq. �A4� reduces to
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�W�t�x�t�� − �W�t���x�t�� =
T

k
�k�x�t�� − f�t�� . �A5�

Finally, from Eqs. �A5� and �19b�, we get

�2 =
T

T
�2�W� − k�x�2 + 2�x�f� = 2��stot� . �A6�

APPENDIX B: CALCULATION OF THE FOURIER
TRANSFORM OF P(�stot , t)

P̂�R,t� 
 �
−�

�

d�stote
iR�stotP��stot,t�

= �
−�

�

dxdx0P�x0,x,t�exp�iR	�

2
x0

2 +



2
x2 + �
�

= eiR��
−�

�

dxdx0P�x0,x,t�exp�iR	�

2
x0

2 +



2
x2
� .

�B1�

The factor exp�iR� �
2 x0

2+ 

2 x2�� in Eq. �B1� can be written

as

exp�iR	�

2
x0

2 +



2
x2
� = e1/2iRa†·B·a, �B2�

with

B 
 	� 0

0 


 . �B3�

� P̂�R,t� =
eiR�

2��det A
�

−�

�

dae−1/2a†·A−1·a+iR/2a†·B·a

=
eiR�

2��det A
�

−�

�

dae−1/2a†·�A−1−iRB�·a

=
eiR�

2��det A
�

−�

�

dae−1/2a†·A−1·�I−iRA·B�·a

=
eiR�

2��det A

2�

�det�A−1�det�I − iRA · B�

=
eiR�

�det�I − iRA · B�
, �B4�

which is Eq. �39�.
The determinant det�I− iRA ·B� is given by

det�I − iRA · B� =
T − iR��x

2 − T�
k�x2�

+ 	�x
2 − T

k�x2�

e−2kt/���1 + iR�2 + R�i − R�

��	�x
2 − T

T

e−2kt/� −

�x
2

T
�� . �B5�

APPENDIX C: PROOF OF Š�F(�)‹��F FOR HARMONIC
OSCILLATOR

In this appendix, our motivation is to evaluate ��F����
and show that ��F������F.

Let us consider the potential

U�x,�� =
1

2
kx2 − xf��� , �C1�

where f�t� is an arbitrary protocol. The protocol ��t�= f�t� is
assumed to be equal to zero at time t=0. Thus, ��0�=0. After
time �, ����= f���. The equilibrium free energy at parameter
corresponding to t=0 is FA=T ln�� k

2�T �. The equilibrium
free energy corresponding to the final value of the protocol is

FB = T ln	� k

2�T

 −

f2

2k
. �C2�

Here,

�F = FB − FA = −
f2

2k
. �C3�

The initial probability density of the particle position is

P�x0� =� k

2�T
exp	− kx0

2

2T

 . �C4�

The final time-evolved solution for P�x ,�� is

P�x,�� =� k

2�T
exp	− k�x − �x��2

2T

 . �C5�

where �x���� is obtained from Eq. �5� on replacing t by �.
Thus,

��F���� − �F =
1

2
k�x2� − �x�f −

T

2
+

f2

2k
=

1

2
k	T

k
+ �x�2


− �x�f −
T

2
+

f2

2k
=

1

2
k	�x�2 − 2�x�

f

k
+

f2

k2

=

1

2
k	�x� −

f

k

2

� 0. �C6�

When f�t�=A sin 	t, the instantaneous change in free energy
is given by

�F�t� =
1

2
k�x�t��2 − �x�t��f�t�

=
A2e−kt/� sin 	t

k2 + �2	2 ��	 + ekt/��− �	 cos 	t + k sin 	t��

+
kA2e−2kt/�

2�k2 + �2	2�2 ��	 + ekt/��− �	 cos 	t

+ k sin 	t��2, �C7�

and the change in equilibrium free energy is given by
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�F =
A2 sin2 	t

2k
. �C8�

For a protocol of time interval between t=0 to t=�=2� /	,
we get

��F���� = −
A2�k3 + �2 − e−k�/�	�k�2	2 + 2e−k�/2�	�3	3�

2�k2 + �2	2�2 ,

��F� = −
A2

2k
. �C9�
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